TRANSFORMATIONS OF 13-OXOPROTOBERBERINIUM METHO SALTS III:

BIOGENETICALLY PATTERNED CONVERSIONS TO RHOEADINES

B. Nalliah and R. H. Manske

Chemistry Department, University of Waterloo

Waterloo, Ontario, Canada

and

R. Rodrigo*

Chemistry Department, Wilfrid Laurier University

Waterloo, Ontario, Canada.

(Received in USA 24 May 1974; received in UK for publication 1 July 1974)

Current views¹ of benzylisoquinoline alkaloid biogenesis assign to the tetrahydroprotoberberines a central position in the biosynthetic chain which progresses from tetrahydrobenzylisoquinolines through the tetrahydroprotoberberines to a variety of alkaloid types. One hitherto speculative link in this sequence recently received experimental support from the observation² that doubly labelled tetrahydropalmatine methiodide was incorporated by <u>Papaver bracteatum</u> plants into the rhoeadine alkaloid alpinigenine.

We now report the first <u>in vitro</u> conversion of a tetrahydroprotoberberine to a rhoeadine using the same type of 13-oxoprotoberberinium metho salt which had earlier led to spirobenzylisoquinolines³ and protopine⁴ analogues - two other termini of the biosynthetic chain.

Thus the tetramethoxy-13-oxoprotoberberinium salt <u>1</u> was prepared from tetrahydropalmatine in a manner similar to that employed earlier³ for <u>2</u>, and in comparable yields. [1; m.p. (of perchlorate) 273-4°; v_{max}^{nujol} 1690 cm⁻¹; $\delta(d_6 - DMSO)$ 3.33 (m, 2H), 3.38 (S, 3H), 3.76 - 3.88 (m, 2H), 3.78 (s, 2 x 3H), 3.88 and 4.00 (s, 2 x 3H), 5.17 (br. s, 2H), 5.65 (s, 1H), 6.87 (s, 1H) 6.97 (s, 1H) 7.41 and 7.90 (q, 2H) J_{AB} = 9.0 Hz.] This compound upon treatment with zinc in 30% aqueous acetic acid produced the tricyclic ketone <u>3</u> analogous to <u>4</u>⁴ [<u>3</u>; yield 57%;

2853

m.p. 166-7°; v_{max}^{nujol} 1682 cm⁻¹; δ (CDCl₃) 1.80 (s, 3H); 3.77 (s, 3H), 3.83 (s, 2 x 3H), 3.86 (s, 3H) 6.66 (s, 1H) 6.90 (s, 1H), 6.83 and 7.10 (q, 2H) $J_{AB} = 8.5$ Hz; M⁺ = 385.] Both 3 and 4 suffered von Braun ring fission in the 'expected' manner with cyanogen bromide in tetrahydrofuran to yield the bromocyanamides 5 and 6 respectively. [5; yield 47%; m.p. 113-114°; $v_{max}^{CHCl_3}$ 2220 and 1682 cm⁻¹; δ (CDCl₃) 2.83 (s, 3H, N - Me), 2.80 - 3.33 (m, 4H, CH₂-CH₂), 3.86, 3.93, 3.98, 4.00 (s, 4 x 3H, 4 x OMe), 4.30 and 5.08 (s, 2 x 2H, CH₂CO and CH₂Br resp.) 6.76 and 6.85 (s, 2 x 1H, H, and H₄), 7.00 and 7.76 (q, 2H, H₁₁ and H₁₂ resp.) $J_{AB} = 8.5$ Hz; M⁺ = 490 and 492. Compound 6 had similar spectral properties.] This result is at variance with

earlier studies in which tetrahydroberberine⁵ and cryptopine⁶ were found to undergo carbon-nitrogen cleavage with cyanogen bromide in benzene and chloroform solution respectively at different sites; in neither case was any product arising from the expected C_{θ} -N cleavage isolated. The anomalous course of the von Braun reaction in these instances was subsequently rationalised⁷ by the postulate that proper access of the bromide ion to C_{θ} of the intermediate quaternary cyanamide is hindered by the presence of the C_{θ} oxygen substituent. In view of the present results however, a more complex and solvent dependent mechanism must prevail; we have found for instance that the protopine alkaloid allocryptopine, contrary to the earlier results⁶ with cryptopine, provides mainly the bromocyanamide<u>11</u> resulting from C₈-N cleavage upon treatment with cyanogen bromide in tetrahydrofuran. [<u>11</u>, 45% yield; m.p. 142-3°; $v_{max}^{CHC1_3}$ 2220 and 1680 cm⁻¹; δ (CDC1₃) 2.80 (s, 3H, N-Me), 3.00-3.33 (m, 4H, CH₂-CH₂), 3.86 and 4.00 (s, 2 x 3H, 2 x OMe), 4.30 (s, 2H, CH₂CO), 4.60 (s, 2H, CH₂Br), 6.10 (s, 2H, -OCH₂O-), 6.85 and 7.43 (s, 2 x 1H, C₄-H and C, -H resp.), 6.88 (s, 2H, 2 x aromatic H); M⁺ = 474 and 476.]

The bromocyanamides 5 and 6 are "Narceine equivalents" and upon treatment with refluxing ethanolic potassium hydroxide were converted to the indenes 7 and 8 respectively in accordance with previous experience^{8,9} with compounds of this type. The indene 7 was found to be identical with a sample previously synthesised⁸ in this laboratory and the properties of 8 were very similar to it^{10} . Since 7 had previously been converted⁶ into the rhoeadine alkaloids (<u>+</u>) <u>cis</u>-alpinigenine, 9 and (<u>+</u>) cis-alpinine, <u>10</u> the reactions described here constitute an in vitro duplication¹¹ of the results of the labelling experiments².

In view of the foregoing results the following biogenetic proposal may be made (Scheme 1). It differs from the earlier suggestions^{1,2,12} in the recognition of oxidation at C_{13} of the protoberberine as the initial step of the oxidative progression that culminates in the rhoeadines.

The penultimate enamine-aldehyde is reminiscent of an intermediate proposed¹³ for biogenesis of the benzophenanthridine alkaloids. Feeding experiments designed to test the validity of our hypothesis are now being planned.

Acknowledgements

We thank the National Research Council of Canada for financial support.

- 1. For reviews and references to the original work see
 - a) F. Santavy, "The Alkaloids", 12, 429 (1970).
 - b) M. Shamma, "The Isoquinoline Alkaloids", Academic Press, 1972.
- 2. H. Rönsch, Eur. J. Biochem., 28, 123 (1972).
- 3. B. Nalliah, R. H. Manske, R. Rodrigo and D. B. MacLean, Tetrahedron Letters, 2795 (1973).
- B. Nalliah, R. H. Manske and R. Rodrigo, Tetrahedron Letters, 1765(1974). Part II of the series.
- 5. I. Sallay and R. H. Ayers, Tetrahedron, 19, 1397 (1963).
- 6. K. W. Bentley and A. W. Murray, J. Chem. Soc., 2497 (1963).
- 7. P. W. Jeffs, "The Alkaloids", 9, 59-61 (1967).
- 8. K. Orito, R. H. Manske and R. Rodrigo, J. Am. Chem. Soc., 96, 1944 (1974).
- 9. W. Klötzer, S. Teitel, J. Blount and A. Brossi, Monatsh. für Chemie, 103, 435 (1972)
- 10. Acceptable elemental analyses were obtained for all new compounds.
- 11. The B/D ring fusion in natural alpinine and alpinigenine is trans.
- F. Šantavy, J. L. Kaul, L. Hruban, L. Dolejš, V. Hanuš, K. Blaha and A. D. Cross, Coll. Czech. Chem. Commun., <u>30</u>, 3479 (1965).
- A. R. Battersby, R. J. Francis, M. Hirst, R. Southgate and J. Staunton, Chem. Commun., 602, (1967).